Skip to main content

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
      • Building 46 Room Reservations
    • Leadership
    • Employment
    • Contact
      • BCS Spot Awards
      • Building 46 Email and Slack
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
      • Postdoctoral Association and Committees
    • Core Facilities
    • InBrain
      • InBRAIN Collaboration Data Sharing Policy
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
      • Course 6-9 MEng
    • Brain and Cognitive Sciences PhD
      • How to Apply
      • Program Details
      • Classes
      • Research
      • Student Life
      • For Current Students
    • Molecular and Cellular Neuroscience Program
      • How to Apply to MCN
      • MCN Faculty and Research Areas
      • MCN Curriculum
      • Model Systems
      • MCN Events
      • MCN FAQ
      • MCN Contacts
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
      • MIT Summer Research Program (MSRP)
      • Post-Baccalaureate Research Scholars
      • Conferences, Outreach and Networking Opportunities
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
    • Upcoming Events
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us

Footer

  • Contact Us
  • Employment
  • Be a Test Subject
  • Login

Footer 2

  • McGovern
  • Picower

Utility Menu

  • Directory
  • Apply to BCS
  • Contact Us
Brain and Cognitive Sciences
Menu
MIT

Main navigation

  • About BCS
    • Mission
    • History
    • Building 46
    • Leadership
    • Employment
    • Contact
    • Directory
  • Faculty + Research
    • Faculty
    • Areas of Research
    • Postdoctoral Research
    • Core Facilities
    • InBrain
  • Academics
    • Course 9: Brain and Cognitive Sciences
    • Course 6-9: Computation and Cognition
    • Brain and Cognitive Sciences PhD
    • Molecular and Cellular Neuroscience Program
    • Computationally-Enabled Integrative Neuroscience Program
    • Research Scholars Program
    • Course Offerings
  • News + Events
    • News
    • Events
    • Recordings
    • Newsletter
  • Community + Culture
    • Community + Culture
    • Community Stories
    • Outreach
    • Get Involved (MIT login required)
    • Resources (MIT login Required)
    • Upcoming Events
  • Give to BCS
    • Join the Champions of the Brain Fellows Society
    • Meet Our Donors

Directory

Breadcrumb

  1. Home
  2. Directory
  3. Nidhi Seethapathi
Seethapathi
Nidhi
Ph.D.
Middleton CD Assistant Professor of Neuroscience
Brain & Cognitive Sciences and Electrical Engineering and Computer Science
Faculty Appointment
Primary
Building
46-3015
Email
[email protected]
Phone
6149061511
Lab website
Administrative Asst
[email protected]
    About

    Seethapathi is the Frederick A. (1971) and Carole J. Middleton Career Development Assistant Professor of Brain and Cognitive Sciences and Electrical Engineering and Computer Science. She joined the BCS faculty in January 2022 and is currently seeking graduate students, postdoctoral researchers, and undergraduate researchers. The Seethapathi lab aims to build predictive models to help understand human movement using a combination of theory, computational modeling, and experiments. 

    Research

    Understanding the objectives governing movement decisions

    We aim to study the computational objectives that govern movement decisions, the contexts in which they arise, and how different objectives are traded-off with one another. For instance, we have studied the role of energy, stability, and time in governing movement.

    Understanding the strategies used to execute movement

    We aim to study the internal and external variables that guide our actions, the mathematical relationship between these variables, and the algorithms by which they are coordinated. For instance, we have studied the internal variables that guide step to step locomotor control in the presence of noisy actuation.

    Understanding how new movements are learned

    We aim to study how new movements are selected in the face of novel demands, how the space of solutions is explored, and the ways in which learning can be improved. For instance, we have developed a theory of locomotor adaptation that predicts multiple observed experimental phenomena.

    Don't miss our next newsletter!
    Sign Up

    Footer menu

    • Contact Us
    • Employment
    • Be a Test Subject
    • Login

    Footer 2

    • McGovern
    • Picower
    Brain and Cognitive Sciences

    MIT Department of Brain and Cognitive Sciences

    Massachusetts Institute of Technology

    77 Massachusetts Avenue, Room 46-2005

    Cambridge, MA 02139-4307 | (617) 253-5748

    For Emergencies | Accessibility

    Massachusetts Institute of Technology
    OSZAR »